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Fig. 1. Simulation of two vortex rings colliding using our grid-free fluid solver based on Gaussian Spatial Representation. The figures visualize the vorticity
magnitude at frames 0, 74, 123, 178, and 242, showcasing long temporal stability, improved vorticity preservation, and adaptive spatial accuracy, capturing
fine-scale details with intricate dynamics, such as the disturbed large vortex ring splitting into massive smaller ones.

We present a grid-free fluid solver featuring a novel Gaussian representa-
tion. Drawing inspiration from the expressive capabilities of 3D Gaussian
Splatting in multi-view image reconstruction, we model the continuous flow
velocity as a weighted sum of multiple Gaussian functions. This representa-
tion is continuously differentiable, which enables us to derive spatial differ-
entials directly and solve the time-dependent PDE via a custom first-order
optimization tailored to fluid dynamics. Compared to traditional discretiza-
tions, which typically adopt Eulerian, Lagrangian, or hybrid perspectives,
our approach is inherently memory-efficient and spatially adaptive, enabling
it to preserve fine-scale structures and vortices with high fidelity. While
these advantages are also sought by implicit neural representations, GSR
offers enhanced robustness, accuracy, and generality across diverse fluid
phenomena, with improved computational efficiency during temporal evo-
lution. Though our first-order solver does not yet match the speed of fluid
solvers using explicit representations, its continuous nature substantially
reduces spatial discretization error and opens a new avenue for high-fidelity
simulation.We evaluate the proposed solver across a broad range of 2D and
3D fluid phenomena, demonstrating its ability to preserve intricate vortex dy-
namics, accurately capture boundary-induced effects such as Kármán vortex
streets, and remain robust across long time horizons—all without additional
parameter tuning. Our results suggest that GSR offers a compelling direction
for future research in fluid simulation. The source code for our fluid solver
is publicly available at https://github.com/xjr01/Gaussian-Fluids-Code.
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1 INTRODUCTION
Fluid phenomena have presented enduring challenges in computer
graphics, characterized by the need for expressive representations
to capture rich spatial details, alongside the demand for efficient and
accurate temporal evolution to handle non-linear and chaotic dy-
namics. Traditional fluid solvers lean on grid-based or particle-based
spatial representations, aligning with the Eulerian and Lagrangian
perspectives. Hybrid approaches have also been proposed. These
straightforward spatial discretizations enable efficient calculations
for solving temporal dynamics.

Despite substantial progress, traditional solvers persistently face
challenges due to limited expressiveness. Eulerian methods often
suffer from numerical viscosity arising from the lack of continuity,
while the limited accuracy of Lagrangianmethods like the Smoothed
Particle Hydrodynamics (SPH) impedes the capture of fine struc-
tures [Koschier et al. 2022]. Hybrid approaches aim to combine the
strengths of both views, but introduce numerical error in data trans-
ferring between the two discretizations. Though these limitations
can be alleviated with extensive memory usage, it would lead to the
curse of dimensionality.
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To deal with these challenges, we aim to utilize expressive, contin-
uous spatial representations for fluid simulation. In this context, both
Implicit Neural Representations (INR) and 3D Gaussian functions
have recently shown promise in representing both function values
and derivatives with high fidelity and spatial adaptiveness. While
we focus on Gaussian functions due to their flexibility and efficiency,
our endeavor aligns with the growing trend of employing INR in
simulations, e.g. for fluid dynamics [Chen et al. 2023], garment un-
tangling [Santesteban et al. 2022], and facial animation [Yang et al.
2023]. Yet, the continuous nature of these representations often
incurs greater computational cost and optimization challenges, such
as slow convergence [Wang et al. 2022] and difficulty in enforcing
hard physical constraints [Chen et al. 2023]. There remains no con-
sensus on an efficient, unified PDE-solving strategy or interactive
editing workflow.

We propose Gaussian Spatial Representation (GSR), a novel con-
tinuous representation for fluid dynamics, paired with a first-order,
physics-guided optimization framework. We carefully design a com-
posite loss that enforces incompressibility and preserves vorticity.
We also introduce an optimization strategy to resolve conflicts in
gradient directions, enhancing stability and convergence. Our so-
lution consistently outperforms INR-based approaches in stability,
accuracy, and detail preservation.
In summary, GSR offers the following properties:

• Continuous Differentiability: Enables accurate and efficient
computation of spatial derivatives for PDE terms.
• Compactness and Adaptivity: Significantly reduces memory
footprint while retaining thin structures.
• Vorticity Fidelity: Maintains vortex structures while handles
harmonic components more faithfully than vortex-only ap-
proaches.

We acknowledge that the first-order solver speed and strict con-
straint enforcement still lag behind well-established discretizations,
but our results, achievedwithout per-scene parameter tuning, demon-
strate a stable, spatially adaptive solver. It performs well across var-
ious 2D and 3D scenarios, with and without obstacles, charting a
promising direction for continuous, grid-free fluid simulation.

2 RELATED WORK
Traditional Fluid Simulation Methods. We briefly summarize tra-

ditional simulation methods with a focus on single-phase flows.
Since the introduction of the stable fluids algorithm [Stam 1999],
various methods have been developed to solve the highly nonlinear
Navier-Stokes equations following the operator-splitting technique.
Grid-based methods primarily focus on accelerating the pressure
projection step [Aanjaneya et al. 2017; McAdams et al. 2010] and
reducing numerical dissipation with more accurate advection [Kim
et al. 2005; Selle et al. 2008]. Recently, there has been growing in-
terest in impulse-based fluid methods [Feng et al. 2023a; Nabizadeh
et al. 2022; Selle et al. 2008], which refine advection through a re-
formulation of the governing equations into the impulse-velocity
framework. These methods lead to better vorticity preservation,
especially within Eulerian velocity-based solvers, and demonstrate
improved stability in capturing fine-scale features.

Lagrangian alternatives such as Smoothed-particle hydrodynam-
ics (SPH) methods [Müller et al. 2003] have been widely explored.
These methods focus on enhancing incompressibility [Bender and
Koschier 2016; Ihmsen et al. 2013], improving spatial adaptivity [Owen
et al. 1998], and mitigating errors due to interpolation inconsisten-
cies in sparsely sampled regions [Band et al. 2018; Westhofen et al.
2023]. A comprehensive overview of SPH techniques can be found
in [Koschier et al. 2019]. Vortex methods typically use Lagrangian
representations such as particles [Cottet et al. 2000], filaments [Weiß-
mann and Pinkall 2010], and sheets [Brochu et al. 2012]. They refor-
mulate the fluid equations into vorticity-velocity form and exhibit
difficulties in geometric and boundary treatments. Many hybrid
methods are proposed to combine the advantages among them.
There are Eulerian and Lagrangian hybrid methods [Foster and

Metaxas 1996; Jiang et al. 2015; Zhu and Bridson 2005] as well as
vorticity and velocity hybrid methods [Koumoutsakos et al. 2008;
Pfaff et al. 2012]. In general, traditional methods face challenges
due to the limited expressivity of their spatial representations and
improvements have been proposed over the years. We focus on
using continuous representation with more expressivity. Although
our optimization-based approach has some limitations compared to
established state-of-the-art methods using explicit representations,
it offers advantages in detail preservation and spatial adaptivity,
which we consider a promising direction for exploration.

Emerging Trends in Simulation using Continuous Representations.
Continuous representations with accurate gradient estimations are
attracting wide attention in graphics and vision tasks, such as scene
reconstruction [Feng et al. 2024; Mildenhall et al. 2021], video com-
pression [Chen et al. 2021], and physics spatial-temporal approxi-
mation [Karniadakis et al. 2021]. There is also a trend to apply INR
and Gaussian functions in simulations. Many works apply them
as mass distribution functions and incorporate them with exist-
ing numerical solvers (e.g., Material Point Methods) to support
physics-based scene editing or animation [Feng et al. 2023b; Xie
et al. 2023]. Deng et al. [2023] leverages INR to store flow maps
and generate non-dissipative results using a grid-based fluid solver
with long-term advection. However, fewer works explore how to
solve time-dependent PDEs using these novel representations as
spatial functions. The most relevant works to us are Implicit Neural
Spatial Representations for PDEs (INSR) [Chen et al. 2023] and Neu-
ral Monte Carlo Fluids (NMC) [Jain et al. 2024], where the former
applies INR as spatial representations for fluid and soft-body simu-
lations and solves temporal PDEs via optimization, while the latter
takes advantage of the continuity nature of INR by leveraging the
walk on stars method for pressure solving and augment the INR to
fit boundary conditions. Our method takes advantage of the locality
and flexibility of Gaussian functions and achieves better efficiency
and stability in temporal evolution.

3 BACKGROUND
The motion of incompressible fluid is governed by the Navier-Stokes
equations with the divergence-free constraint:

𝜕𝒖

𝜕𝑡
+ (𝒖 · ∇)𝒖 = − 1

𝜌
∇𝑝 + 𝜈∇2𝒖 + 𝒈,

∇ · 𝒖 = 0,
(1)
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where 𝒖 is the velocity field, 𝜌 is density, 𝑝 is pressure, 𝜈 is kinematic
viscosity, and 𝒈 is acceleration due to external force. To compute
the time evolution of 𝒖, numerical solvers typically employ an oper-
ator splitting scheme, consisting of two main steps: advection and
projection. In the advection step, the equation 𝜕𝒖

𝜕𝑡 + (𝒖 · ∇)𝒖 = 0 is
solved by transporting the velocity field to its new positions at the
next time step, i.e. 𝒖∗ (𝒙) ← 𝒖𝑛−1 (𝚿𝑛−1 (𝒙)), where 𝚿𝑛−1 maps a
position at frame𝑛 to its corresponding position at frame𝑛−1. In the
projection step, the pressure field 𝑝∗ (𝒙) = 𝑝 (𝒙 )

𝜌 is solved subject to
the divergence-free constraint, i.e., ∇ · (𝒖∗ − ∇𝑝∗) = 0. The velocity
field at the next frame is then updated as 𝒖𝑛 (𝒙) ← 𝒖∗ (𝒙) − ∇𝑝∗ (𝒙).
In addition to the two main steps, the external forces are usually
applied to the velocity field before advection, while viscosity is
introduced to the system between advection and projection.

4 GAUSSIAN SPATIAL REPRESENTATION
Math Definition. Motivated by the high expressiveness of 3D

Gaussian Splatting [Kerbl et al. 2023] in reconstruction tasks, we
propose Gaussian spatial representation (GSR), a continuous, dif-
ferentiable, and memory-efficient spatial representation based on
combined Gaussian functions. A 𝑑-dimension (𝑑 ∈ {2, 3}) Gaussian
function 𝐺𝑖 : R𝑑 → R can be formulated as:

𝐺𝑖 (𝒙) = exp
{
−1
2
(𝒙 − 𝝁𝑖 )⊤𝚺−1𝑖 (𝒙 − 𝝁𝑖 )

}
, (2)

where 𝝁𝑖 is the position of the Gaussian particle 𝑖 , and 𝚺𝑖 is its
covariance matrix. Since 𝚺

−1
𝑖 is positive definite, we can further

decompose it into
𝚺
−1
𝑖 = 𝑹𝑖𝑺

−1
𝑖 𝑺−1𝑖 𝑹⊤𝑖 , (3)

where 𝑹𝑖 is a 𝑑-dimension rotation matrix, and 𝑺𝑖 is a positive
diagonal matrix. The rotation 𝑹𝑖 can be represented as an angle 𝜃𝑖
in 2D and a quaternion 𝒓𝑖 in 3D. For convenience of implementation,
we store the diagonal elements of 𝑺−1

𝑖
(denoted as 𝒔−1

𝑖
) instead of

𝑺𝑖 for particle 𝑖 . A GSR is a vector field �̃� : R𝑑 → R𝑚 defined as the
weighted sum of all Gaussian functions:

�̃� (𝒙) =
𝑁∑︁
𝑖=1

𝒗𝑖𝐺𝑖 (𝒙), (4)

where 𝒗𝑖 ∈ R𝑚 is the weight of Gaussian particle 𝑖 , and 𝑁 is the
number of Gaussian particles. Hence, the parameters of a GSR are
Θ = {𝒗𝑖 , 𝝁𝑖 , 𝜃𝑖 , 𝒔−1𝑖

: 𝑖 = 1, · · · , 𝑁 } in 2D and Θ = {𝒗𝑖 , 𝝁𝑖 , 𝒓𝑖 , 𝒔−1𝑖
:

𝑖 = 1, · · · , 𝑁 } in 3D.

Efficiency Improvements. The GSR defined in Equation 4 initially
requires𝑂 (𝑁 ) floating-point operations to evaluate the field at a sin-
gle point, which becomes computationally prohibitive as the number
of queries grows. To mitigate this, we apply a local restriction to
each Gaussian function, exploiting its rapid decay with distance.
This results in the clamped Gaussian function formulation:

𝐺𝑖 (𝒙) =
{
𝐺𝑖 (𝒙) − 𝑐, 𝐺𝑖 (𝒙) ≥ 𝑐

0, 𝐺𝑖 (𝒙) < 𝑐
, (5)

where 𝑐 is a small positive threshold. We subtract the Gaussian func-
tion by 𝑐 to avoid discontinuity of the kernel function. Accordingly,

we change the definition of GSR in Equation 4 into:

�̃� (𝒙) =
𝑁∑︁
𝑖=1

𝒗𝑖𝐺𝑖 (𝒙) . (6)

A hash table is employed to store the Gaussian particles based on
spatial locality, enabling fast retrieval of only the relevant Gaussian
particles. This reduces the time complexity for each query to 𝑂 (1).
Details can be found in supplemental files.

Advantage on Differentiability. The gradient of the GSR can be
computed directly from its definition:

∇�̃� (𝒙) =
𝑁∑︁
𝑖=1

𝒗𝑖∇𝐺𝑖 (𝒙) = −
∑︁

𝑖∈N(𝒙 )
𝐺𝑖 (𝒙)𝒗𝑖 (𝒙 − 𝝁𝑖 )⊤𝚺−1𝑖 , (7)

where N(𝒙) = {𝑖 : 𝐺𝑖 (𝒙) ≥ 0} is the set of the particle indices
near 𝒙 . Though the GSR is not differentiable at the boundary of
any clamped Gaussian function, i.e. �̃� (𝒙) is not differentiable when
∃𝑖 ∈ {1, · · · , 𝑁 }, 𝐺𝑖 (𝒙) = 𝑐 , Equation 7 is a good approximation
for small 𝑐s. Furthermore, we can naturally derive the divergence
and curl operators from this formulation. Unlike implicit neural
representations that rely on auto-differentiation for computing dif-
ferential quantities, GSR allows direct and efficient differentiation,
with the same time complexity as evaluating the GSR field itself.
This inherent advantage leads to faster optimization when enforcing
physics-based constraints, making GSR a computationally superior
choice for dynamic simulations.

5 ALGORITHM
Our work focuses on the dynamics of inviscid fluids with no ex-
ternal force, i.e. 𝜈 = 0 and 𝒈 = 0 in Equation 1. Our fluid solver
can be divided into initialization, physics-based optimization, and
reseeding, as shown in Algorithm 1.

Algorithm 1 Fluid solver with GSR

1: 𝑢0 ← Initialize(𝑢)
2: for 𝑛 ← 1, · · · ,𝑇 do
3: �̃�𝑛−1 ← Reseed(𝑢𝑛−1)

//An initial guess for physics-based optimization:
4: �̃�∗ ← AdvectPositions(�̃�𝑛−1)

//Physics-based optimization:
5: 𝑢𝑛 ← OptimizeLosses(�̃�∗, 𝑢𝑛−1)
6: end for

5.1 Initialization
At the very beginning of the simulation, we initialize the GSR �̃�0 (𝒙)
to fit a given velocity field 𝒖 (𝒙). GSR is capable of fitting any con-
tinuous vector field if trained properly with a sufficient number
of kernels. For any vector field 𝒗 : R𝑑 → R𝑚 defined on domain
D ⊂ R𝑑 , our goal is to find a GSR �̃� : R𝑑 → R𝑚 as close to 𝒗 (𝒙) on
D as possible. This can be interpreted as an optimization problem:
argminΘ

1
𝑑 |D |

∫
D ∥𝒗 (𝒙) − �̃� (𝒙)∥1d𝑉 . Directly evaluating the inte-

gral is difficult, thus we take the following value loss to approximate
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it in a Monte-Carlo way:

Lval =
1
𝑄𝑑

𝑄∑︁
𝑗=1
∥𝒗 (𝒙 𝑗 ) − �̃� (𝒙 𝑗 )∥1, (8)

where 𝒙1, · · · , 𝒙𝑄 are uniformly randomly sampled from D in each
iteration. To promote high-quality fitting of GSR, we employ an
additional gradient loss:

Lgrad =
1

𝑄𝑑2

𝑄∑︁
𝑗=1
∥∇𝒗 (𝒙 𝑗 ) − ∇�̃� (𝒙 𝑗 )∥sum, (9)

where ∥ · ∥sum =
∑𝑑
𝑘=1

∑𝑚
𝑙=1 | [·]𝑘𝑙 | is the sum of the absolute values

of all elements. The gradient loss can supervise a local neighborhood,
which makes a difference to the point-wise value loss, improving
the training efficiency on the continuous field.
In addition to the value loss and the gradient loss, we leverage

anisotropic loss Laniso proposed by Xie et al. [2023] and volume
loss Lvol proposed by Feng et al. [2024] as regularization terms:

Laniso =
1
𝑁

𝑁∑︁
𝑖=1

max
(
max(𝒔𝑖 )
min(𝒔𝑖 )

− 𝑟aniso, 0
)
, and (10)

Lvol =
1
𝑁

𝑁∑︁
𝑖=1

( ∏(𝒔𝑖 )
1
𝑁

∑𝑁
𝑗=1

∏(𝒔 𝑗 ) − 1
)2

, (11)

where max(·) is the maximum element of a vector,
∏(·) is the

product of all elements of a vector, 𝑟aniso is the maximum threshold
of the ratio between the major axis length and minor axis length of
a Gaussian particle. We take 𝑟aniso = 1.5 in all our experiments.

The total loss in the initialization process is:

Linit = Lval + Lgrad + Laniso + Lvol . (12)

We initialize the parameters of GSR adaptively according to the
particle number, with details specified in the supplementary. We
then run the optimization for enough iterations to get an initial GSR
ready for the simulation.

5.2 Physics-Based Optimization
We formulate the time integration as an optimization problem with
physics-based losses, training the GSR from an initial guess inspired
by Lagrangian advection to better represents the velocity field at
the next frame. Our optimization process leverages physics-guided
gradients to ensure adherence to physical constraints. By employing
a sampling-based strategy, our method effectively handles boundary
conditions without requiring explicit cell-cutting operations, offer-
ing a seamless and flexible approach to simulate complex geometries.
The details of the initial guess, losses, gradient adjustments, and
boundary sampling are described as follows.

5.2.1 Advection-Based Initial Guess. To encourage fast convergence
and temporal consistency, we make an initial guess for the physics-
based optimization with an approximated velocity field advected
from the last frame. Drawing inspiration from the advection step in
Lagrangian methods, we treat the Gaussian particles as Lagrangian
particles and update the position of each particle by moving it along
the velocity for a time step ℎ. Unlike Lagrangian approaches where
each particle moves with its own velocity, our Gaussian particles are

Fig. 2. The gradiant projection technique can turn the contradicted gradi-
ents into compatible ones, resulting in larger steps in gradient descent.

advected using velocities sampled from the Gaussian field according
to Eq. 4. To improve accuracy, we apply the 4-th order Runge-Kutta
convention. Denoting 𝚽

𝑛−1 : R𝑑 → R𝑑 as the mapping from a
position at time step 𝑛 − 1 to the position after applying the RK4
time integration, the advection step is given by 𝝁∗

𝑖
← 𝚽

𝑛−1 (𝝁𝑛−1
𝑖
).

While this step does not precisely solve 𝜕𝒖
𝜕𝑡 + (𝒖 · ∇)𝒖 = 0, it

provides a reliable initial state for subsequent steps. It maintains a
relatively uniform particle distribution without clustering, as long as
the velocity field remains approximately divergence-free, as ensured
in later steps. We also use the advected positions as regularization
in subsequent optimization by introducing a constraint specified
in Section 5.2.5 to limit excessive drift of particles. Serving both
as initialization and regularization, the advected positions acceler-
ate optimization by guiding the solution toward a local optimum,
improving temporal consistency and stability of the spatial represen-
tation. The effectiveness of this step is validated through an ablation
study in Section 6.4.

5.2.2 The PDE Losses. We first introduce the vorticity loss and the
divergence loss used in the physics-based optimization step:

Lvor =
1
𝑄𝑑

𝑄∑︁
𝑗=1
∥∇ × �̃�𝑛 (𝒙 𝑗 ) − 𝜔 (𝒙 𝑗 )∥1, (13)

Ldiv =
1
𝑄

𝑄∑︁
𝑗=1
|∇ · �̃�𝑛 (𝒙 𝑗 ) |2, (14)

where 𝑑 = 1 in 2D examples and 𝑑 = 3 in 3D, 𝒙1, · · · , 𝒙𝑄 are
uniformly randomly sampled from D in each iteration of the opti-
mization, 𝜔 (𝒙) is the vorticity field advected from ∇ × �̃�𝑛−1 (𝒙). In
2D, the vorticity simply transports along the velocity field, i.e.

𝜔 (𝒙) = ∇ × �̃�𝑛−1 (𝚿𝑛−1 (𝒙)). (15)

In 3D, the vorticity field evolves according to D𝜔
D𝑡 = ∇𝒖 · 𝜔 , which

can be characterized by the bidirectional flow map as mentioned by
Wang et al. [2024]:

𝜔 (𝒙 ) = d𝚽𝑛−1 (𝚿𝑛−1 (𝒙 ) )∇ × �̃�𝑛−1 (𝚿𝑛−1 (𝒙 ) ), (16)

where d𝚽𝑛−1 (𝒙) denotes the Jacobian matrix of the forward map-
ping 𝚽𝑛−1 at 𝒙 .

5.2.3 Gradient Projection. We apply the gradient projection tech-
nique, a gradient strategy typically applied in Multi-Task Learning
(MTL) [Dong et al. 2022; Liu et al. 2025; Yu et al. 2020], to the vor-
ticity loss and the divergence loss in the pressure solve training
process, as their gradients may contradict. In the backward stage,
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(a) Euler (b) FLIP (c) SPH (d) INSR (e) Ours (f) Ground-Truth

Fig. 3. Our method compared with traditional Eulerian and Lagrangian discretizations and INSR on the Taylor vortex example. We show frame 300 while more
are given in figure 9.

after computing the gradients of the two losses ∇ΘLvor and ∇ΘLdiv,
we check if their dot product is negative. If so, this indicates a con-
tradiction between the two gradients, meaning that following one
gradient would increase the other loss. When this occurs, let 𝒕1, 𝒕2
be the normalized vector of ∇ΘLvor and ∇ΘLdiv, respectively. We
then modify the gradients of the two losses to:

𝒈vor = ∇ΘLvor − (∇ΘLvor · 𝒕2)𝒕2, (17)
𝒈div = ∇ΘLdiv − (∇ΘLdiv · 𝒕1)𝒕1 . (18)

Moving along 𝒈vor would not affect Ldiv and vice versa, hence
increasing the efficiency of each gradient descent step, as shown in
Figure 2. This technique follows the MTL strategy proposed by Yu
et al. [2020], which in our case can reduce the ripple artifact in the
vorticity field due to sub-optimal optimization processes converging
to local minima, as later shown by an ablation test in Section 6.4.

5.2.4 Boundary Handling. There are two types of boundary con-
ditions across all experiments in this paper. The First type can be
formulated as 𝒖 (𝒙) = 𝒖b (𝒙) while the second (𝒖 · 𝒏) (𝒙) = 𝑓 (𝒙),
where 𝒙 ∈ 𝜕D, 𝒏 is the boundary normal, 𝒖b and 𝑓 are given
functions. They stand for the "no-slip" and "free-slip" conditions,
respectively. We handle the two types of boundary conditions by
introducing two boundary losses:

Lb1 =
1

𝑄b1𝑑

𝑄b1∑︁
𝑗=1
∥�̃�𝑛 (𝒚 𝑗 ) − 𝒖b (𝒚 𝑗 )∥1, (19)

Lb2 =
1

𝑄b2

𝑄b2∑︁
𝑗=1
|�̃�𝑛 (𝒛 𝑗 ) · 𝒏 𝑗 − 𝑓 (𝒛 𝑗 ) |, (20)

where 𝒚1, · · ·𝒚𝑄b1
, 𝒛1, · · · , 𝒛𝑄b2 are uniformly randomly sampled

from the corresponding type of the domain boundary in each itera-
tion of the optimization, 𝒏 𝑗 = 𝒏(𝒛 𝑗 ) are the normal vectors at the
sampled points.

5.2.5 The Position Penalty. To sufficiently exploit the initial dis-
tribution provided by the previous advection step and prevent the
particles from clustering, we add another regularization term to
constrain their positions:

Lpos =
1
𝑁𝑑

𝑁∑︁
𝑖=1
∥𝝁𝑛𝑖 − 𝝁

∗
𝑖 ∥

2 . (21)

The total loss optimizing the temporal evolution is the weighted
combination of the vorticity loss, the divergence loss, the boundary

loss, and the regularization terms:
L = Lvor+𝜆divLdiv+𝜆b1Lb1+𝜆b2Lb2+𝜆anisoLaniso+𝜆volLvol+𝜆posLpos .

We then use the Adam to optimize the total loss, with the gradient
of Lvor and Ldiv replaced by 𝒈vor and 𝒈div respectively.

5.3 Reseeding
Although the anisotropic regularization term is applied during pro-
jection, some Gaussian particles may inevitably become excessively
elongated due to turbulent fluid motion. To address this, we intro-
duce a reseeding procedure at the beginning of each time step. We
split particles whose maximum scale is at least twice its minimum
scale, i.e. split particle 𝑖 if max(𝒔𝑖 ) ≥ 𝑟anisomin(𝒔𝑖 ). The positions
of the two new particles resulting from the split are sampled from
the Gaussian distribution N(𝝁𝑛−1

𝑖
, 𝚺𝑛−1𝑖 ). Their maximum scales

are halved, while the other parameters of the new particles are in-
herited from particle 𝑖 . This is followed by a local fitting procedure
where we optimize only the parameters of the new particles and
their neighbors using the same loss function as during initialization
(i.e. Linit from Equation 12). Note the number of split particles is
influenced by 𝜆aniso, as a larger 𝜆aniso imposes a stronger penalty
over the particles’ anisotropy in the previous time step, reducing
the number of elongated particles.

6 RESULTS

Table 1. Performance comparison. Timestep is measured in seconds. Run-
ning time (in seconds) indicates the solvers’ average time cost. Memory
usage indicates the average size (in KB) taken by the spatial representation.

Example TimestepMethodRunning Time Particle No. Mem. Usage

Taylor-Green 0.001
INSR 403 - 32.1
NMC 39 - 103.8
Ours 38 576 17.9

Taylor vortex 0.01 INSR 378 - 32.1
Ours 63 5041 ∼ 5511 148.5

Leapfrog 2D 0.025 Ours 48 4846 ∼ 5041 137.0
Vortices pass 0.01 Ours 47 5041 ∼ 5273 143.1

Karman vortex street 0.05 NMC 81 - 134.3
Ours 214 20408 ∼ 24001 598.6

Leapfrog 3D 0.02 Ours 228 64000† 3252.2
Ring collide 0.02 Ours 206 64000† 3252.2

Smoking bunny 0.02 Ours 201 64000† 3252.2
† In all 3D examples, particle splitting does not occur due to sufficient initial particles.

We evaluate our method on a diverse set of 2D and 3D examples,
with all results provided in the supplemental video. Notably, un-
like most methods based on first-order optimization, our approach
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(a) NMC (b) Ours (c) SF+R (Reference)

Fig. 4. Karman vortex street example by Neural Monte Carlo (NMC), our method, and stable fluids with reflection projection (SF+R) proposed by Zehnder et al. [2018]. The
sub-figures display the vorticity fields of frame 152, 199 and 199 of the simulation results, respectively.

Ours

Vortex Particles

Fig. 5. Simulations of the vortices pass example produced by vortex particles with
conserved harmonic components and our method. A pair of vortices pass through a
gap between two spherical smooth objects. The images from left to right are showing
frames 0, 150, 270 and 400, respectively.

does not require hyperparameter tuning across different scenarios,
highlighting the robustness of GSR. To handle examples of varying
scales, we rescale the entire fluid domain, boundary geometries, and
initial velocity to a canonical size. With this adjustment, a single
parameter setting suffices for all 2D examples and another for all
3D examples. Further details on hyperparameter settings, the nor-
malization strategy, and scene configurations are available in the
supplemental document.
We first show the numerical accuracy and convergence rate of

GSR with a quantitative study on an example with analytical solu-
tion. We then validate its effectiveness by demonstrating the adap-
tive spatial accuracy on classical fluid phenomena. Next, we evaluate
the stability of our optimization-based solver, in together with its
boundary handling. Moreover, we demonstrate that GSR effectively
preserves vortices and is capable of handling complex dynamic
behaviors with highly intricate fluid simulations. Finally, multiple
ablations are conducted to assess the contribution of key compo-
nents in our method. The performance for all examples is provided.

6.1 Quantitative Study
We conduct a quantitative study using the Taylor-Green vortex
experiment, analyzing the numerical accuracy of our method and
the convergence rates of the optimizations during initialization and
time integration. In this example, the initial velocity field is set to

𝒖 (𝑥,𝑦) =
[
sin𝑥 cos𝑦
− cos𝑥 sin𝑦

]
(22)

defined on the fluid domain D = [0, 2𝜋] × [0, 2𝜋]. We then run the
simulation for 100 frames with a 0.001 seconds timestep.
Since the velocity field will remain constant on inviscid incom-

pressible fluids, we measure the numerical error of different solvers
by the mean squared error (MSE) between the simulated velocity
fields and 𝒖 (𝑥,𝑦) sampled on a 60×60 uniform grid at certain frames.
The results in Figure 6 show that our method has significantly lower

numerical error than INR-based methods, even with less memory
usage as in Table 1. We also conduct a comparison against the semi-
implicit Eulerian method run on a 64×64MAC-grid (taking up 49KB
each frame), which has the highest error among all as in Figure 6.

We plot the loss curves of the optimizations during initialization
and a time integration process with time step size 0.01 seconds
from the 100-th frame in Figure 6, which indicates fast convergence
of our method. Figure 7 shows the loss curves for 400 iterations
of the initialization optimization and 4100 iterations of the time-
integration optimization. During simulation, we apply an early stop
on the time-integration optimization if both vorticity and divergence
loss do not change significantly for 500 iterations.

GT Vel. INSR NMC Ours
Frame Eulerian INSR NMC Ours

0 2.432 × 10−4 8.998 × 10−7 1.829 × 10−4 9.957 × 10−8
50 9.757 × 10−3 1.715 × 10−5 6.492 × 10−4 2.510 × 10−7
100 2.019 × 10−2 1.992 × 10−5 1.725 × 10−3 2.181 × 10−7

Fig. 6. Quantitative comparison using the Taylor-Green vortex example.
Top-left: velocity field of the example. Top-right: the MSE fields at frame 100
of different methods. Bottom: MSE between the simulated velocity fields of
different methods and the ground truth.

6.2 Validation
Efficacy of the GSR. We validate the efficacy of our proposed GSR

by comparing the simulation results of Taylor vortex generated by
our method, traditional methods with explicit representations, and
INSR as another continuous representation. As shown in Figure 3,

Fig. 7. Loss curves in the optimizations during initialization (left) and time
integration (right).
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the GSR preserves vorticity significantly better than all other meth-
ods, offering the best approximation to the ground truth, generated
using a vortex-based 2D fluid solver. More frames are visualized in
Figure 9. Compared to the Eulerian method with a 512 × 512 MAC
grid, the GSR preserves the thin structure of the Taylor vortex with
significantly reduced memory. When compared to the FLIP method
with a 128×128 grid and 65536 particles, GSR demonstrates superior
detail preservation and stability, using fewer than 5600 particles,
highlighting the advantages of Gaussian kernels over traditional
Lagrangian particles in both accuracy and stability. Our method
also show far less numerical dissipation free of artifacts caused by
particle deficiency compared to the SPH method. While both INR
and GSR represent fluid details with lightweight data structures, our
method outperforms INSR by better preserving vorticity and main-
taining a cleaner background due to the locality of the Gaussian
kernels. Additionally, our method is more time-efficient, as shown
in Table 1, due to the high efficiency of differentiating GSR.

Effectiveness of Our Projection Optimization. Our projection step
demonstrates stability in both obstacle-free and boundary-driven
scenarios. We evaluate the efficiency of our optimization by compar-
ing it to other optimization-based methods, INSR and NMC, on two
classic phenomena: the Taylor vortex (without obstacles) and the
Karman vortex street (boundary-driven). Compared to INSR, our
method introduces less numerical error, yielding more accuracy, as
shown in Figure 9. Unlike INSR, our projection step avoids solving
for the pressure field or Poisson equation, eliminating the calculation
for third-order derivatives in optimization and providing a six-fold
performance boost, as shown in Table 1. Additionally, in the Karman
vortex street example (Figure 4), our method demonstrates improved
stability and accuracy, effectively handling boundary conditions in
a long time horizon. While NMC encounters numerical instability
at the domain boundary, our method successfully generates stable
vortex shedding, closely matching the reference produced by stable
fluids with reflection projection.

Harmonic Component Validation. Our method better handles the
harmonic componentswithout extra efforts comparing to Lagrangian
vortex methods. Yin et al. [2023] noted that the nontrivial harmonic
component of the velocity field evolves over time in non-simply
connected fluid domains. Figure 5 illustrates a pair of vortices pass-
ing through a gap between two spherical obstacles with a no-slip
boundary, where correctly modeling the harmonic component is
key for successful traversal. We apply the Kirchoff point vortex
dynamics and Kelvin’s method of reflection for handling circular
obstacles in the simulation by vortex particles, while maintaining
conserved harmonic components using the same way as [Yin et al.
2023]. Unlike the vortex particles, our method successfully models
the dynamics of the pair of vortices passing through the gap, indi-
cating proper treatment of the harmonic components. However, our
solution cannot strictly guarantee the satisfaction of the boundary
condition or the divergence-free constraint, which we will discuss
further in the supplementary material.

6.3 More Examples
Leapfrog 2D. Four vortices are placed at the bottom of the domain,

with the left two vortices spin counterclockwise (i.e. with positive
vorticity) and the right two spin clockwise (i.e. with negative vortic-
ity). As shown in Figure 10, our solver is able to accurately simulate
the alternating forward dynamics of two pairs of vortices and their
eventual merging into a single vortex.

Leapfrog 3D. Figure 11 shows an example initialized with two
parallel vortex rings facing the same direction. As they move for-
ward, the vortex rings pass through each other, marking one leap.
Our method successfully maintains the ring shapes after 3 leaps.
However, numerical error is accumulated throughout the simula-
tion, which is then converted by the physics-based optimization
into low-divergence velocity components, resulting in small vortex-
ring artifacts near the end of our 3D simulations. Reducing the
accumulated error is worth future exploration.

Ring Collide. In this example, two parallel vortex rings face each
other at the initial frame. As shown in Figure 1, the rings expand as
they approach each other, followed by shredding into many small
vortex rings upon collision. Figure 12 shows the rendering of passive
smoke rings advected by the velocity field. We also compare it with
a real-world recording in our video.

Smoking Bunny. To demonstrate that our method is capable of
handling boundary with a complex geometry, we release two vortex
rings towards the face of the Stanford Bunny. As shown in Figure 13,
the vortex rings deforms and breaks down as they hit the uneven
surface, immersing the bunny in a foggy environment.

(a) 3D Leapfrog

(b) Ring Collide (c) Bunny
Fig. 8. We test ourmethod in complex scenes, demonstrating the advantages
of stability and spatial details.
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6.4 Ablation Tests
Particle Splitting. Figure 14 compares the method without particle

splitting with the full method. The former fails to preserve the thin
filament of the Taylor vortex due to limited expressiveness. Our
reseeding strategy effectively addresses this without introducing
significant overhead, as shown by the particle count in Table 1.
Meanwhile, we do not observe any change in convergence rate of
the following optimization caused by the reseeding process.

Gradient Projection. Without the gradient projection technique
outlined in Section 5.2.3, directly combining the losses can be diffi-
cult to optimize. The gradient of the divergence loss may increase
the vorticity loss, leading to ripple artifacts in the vorticity field, as
shown in Figure 15a. However, by applying the gradient projection,
we achieve a clean result, as seen in Figure 15b.

Advection-Based Initial Guess. The initial guess improves both
solver accuracy and convergence speed of our method. Figure 16
compares our method with and without the initial guess, in which
case we directly optimize the GSR from its configuration at the
end of the last time step. For an intuitive comparison, we set up
a background grid moving at the inflow speed with two columns
marked in a darker color. In Figure 16a, the flow rate is overly rapid,
as evidenced by the vortex originally inside the darker zone moving
out of it. In contrast, the flow rate in Figure 16b closely matches the
inflow. Additionally, without advection, the projection step requires
an average of 4661.3 iterations, compared to 3902.5 iterations with
advection.

6.5 Performance
We run all experiments on a NVIDIA GeForce RTX 4090 GPU. Ta-
ble 1 shows the time cost and memory usage for all examples, along
with a comparison to INR-based methods. Our method exhibits
comparable time and memory usage, while delivering superior qual-
ity and stability. Note the running times shown in Table 1 are all
much longer than those used by traditional Lagrangian and Euler-
ian methods, since both GSR and INR-based methods require costly
first-order optimizations.

7 CONCLUSION
We have presented a novel grid-free fluid solver based on a Gauss-
ian spatial representation. Compared to established grid-based fluid
solvers, our framework offers the advantages of enhanced spatial
details and effective vorticity preservation over time. When com-
pared to continuous implicit representations, our method excels in
handling boundary phenomena. Additionally, our approach is more
stable, scalable, and efficient, supporting long time horizons with
consistent parameters, making it a promising tool for both 2D and
3D fluid simulations.
Despite these strengths, our method has some limitations. First,

relying on soft constraints to solve the Navier-Stokes equations
introduces small residual errors in divergence and boundary condi-
tions, which may lead to discrepancies in global fluid behavior when
compared to grid-based solvers. Additionally, while harmonic com-
ponents are implicitly preserved, they are not explicitly modeled

with time consistency, which may result in inaccuracies when simu-
lating dynamics in non-simply connected domains. Future work will
focus on incorporating hard constraints and improving the mod-
eling of harmonic components. Furthermore, we plan to explore
inverse problems, such as key-frame-based fluid control, leveraging
the efficient gradient calculation capabilities of our representation.
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Semi-Implicit Euler
512 × 512
(2 MB)

FLIP
128 × 128 with
65536 particles
(1MB)

SPH
288212 particles
(8.8MB)

INSR
[Chen et al. 2023]
(32.1 KB)

Ours
5041 ∼ 5511 particles
(148.5 KB)

Ground truth:
vortex-in-cell
512 × 512
(2MB)

Fig. 9. We compare our method with different traditional spatial discretizations and INSR using the Taylor vortex example. We show the average file size of the according
representation of the velocity fields on the first column, enclosed by parenthesis. Images show the vorticity field at frame 0, 100, 200, 300, and 399, respectively. Note the initial frame
of the SPH results is sightly different from others since the vorticity on each particle is calculated with the differential operators in the SPH convention.

Fig. 10. Our simulation results on the 2D leapfrog example. The figures are showing frames 0, 165, 456, 1050 and 1500 from left to right.
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Fig. 11. Our simulation results on the 3D leapfrog example. The figures are frames 0, 148, 332, 548, and 860 from left to right.

Fig. 12. Passive field advected by the ring collide example at frame 0, 74, 123, 178, and 242. Thumbnails of the vorticity view are placed on the top-left.

Fig. 13. Vorticity magnitude of the smoking bunny example at frame 0, 95, 188, 300, and 399 from left to right.

(a) Without particle splitting (b) Full method
Fig. 14. Ablation test on particle splitting. We show vorticity fields at frame 380.

(a) Without gradient projection (b) Full method
Fig. 15. Ablation test on the gradient projection technique. We show vorticity
fields at frame 36 with a time step of 0.1 seconds.

(a) Without initial guess (b) Full method
Fig. 16. Ablation test on the advection-based initial guess. The images from top to bottom are
simulation results at frames 127, 150, 174 and 198, respectively. The background grid in gray
dashed line is moving forward at the inflow speed. We track one vortex (marked by the red
boxes) to illustrate the flow rate of the simulation w.r.t. the speed of the grid.
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